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The ‘ switch-on ’ ionizing shock wave, initiated by a strong radial discharge 
between electrodes at one end of a cylindrical tube placed in a solenoid, moves 
along the tube with a speed that depends principally on the parameter 

c = B,Bo/(2eoPl)Y 

where B, is the jump in the transverse magnetic field caused by the discharge 
current, B, is the applied axial field, p1 is the upstream (neutral) gas density, 
and eo is the ionization energy. This simple result, established by Kunkel & 
Gross (1962) with the aid of the ChapmanJouguet hypothesis and for fully 
ionizing shocks in an infinite-slab plasma, is here extended to cylindrical plasmas 
and to partially ionizing shocks. The effect of dissociation energy is also taken 
into account. The degree of ionization is determined by applying the Saha 
equation downstream of the shock. Most reported experiments fall into the 
partially ionized region, and are found to be in good agreement with the theory 
given in this paper. 

1. Introduction 
The production of plasmas by means of electromagnetically driven shock 

waves is now a familiar technique. A large number of field configurations and 
apparatus geometries have been used, and the appropriate shock equations have 
been developed for many of these. A particularly attractive and simple type of 
ionizing shock is that initiated by a strong radial discharge between electrodes at 
one end of a cylindrical tube situated in a solenoid (see figure 1). A shock front, 
more or less orthogonal to the tube axis, advances into neutral gas, in which region 
the applied magnetic field (due to the solenoid) is entirely axial. The shock front 
carries a strong radial current, so that downstream of the front the magnetic 
field will have an azimuthal component. This is an important example of ‘switch- 
on ’ ionizing waves, which have been investigated experimentally by several 
people, notably Wilcox et al. (1960,1962) and Brennan, Brown, Millar &Watson- 
Munro (1963). The essential features of these waves are that the direction of 
propagation is parallel to the undisturbed, upstream magnetic field and that the 
upstream gas is non-conducting. Another important feature, common to all 
ionizing waves, is the relatively large amount of energy that must be invested 
in ionization. 

Many contributions to the general theory of ionizing shocks, which include 
switch-on shocks as a special case, have appeared in the literature recently. The 
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geometry chosen is almost always an infinite slab (i.e. an ‘annulus’ of i nb i t e  
radius), and the studies are most frequently concerned with the dynamics of 
fronts moving at right angles to the applied fields (e.g. see Kulikovski & Lyubimov 
1960, Helliwell 1963, and Chu 1964). The theoretical studies most appropriate 
to the experimental arrangement of figure 1 are those of Kunkel & Gross (1962) 
and the extensions of their theory by Taussig (1964a, b) ;  these contributions 
will be discussed shortly. 

E z l p a w w w m ~  

FIUURE 1. Schematic diagram of apparatus. 

Perhaps the central problem of the theory of ionizing shock waves is that of 
finding a closed expression for the speed of the shock, u1 relative to the upstream 
gas, in terms of some measure of the shock strength and the known upstream 
values of axial magnetic field B,, density p1 and pressure p l .  The conservation 
laws and Maxwell’s equations are alone insufficient for this purpose, and just 
as with gaseous detonations, one further relationship is required in order that 
u1 be determinable. When the upstream gas is pre-ionized, Ohm’s law is applic- 
able in region 1 (see figure 2) and provides the additional relation. This is usually 
taken to be the vanishing of the transverse component of the electric field El 
in the frame of the medium, a result that follows immediately from Ohm’s law 
and the uniformity of the parallel velocity and magnetic fields, and the various 
shocks that can exist under these conditions have been studied by Bazer & 
Ericson (1960). When the upstream gas is neutral, or at most only slightly pre- 
ionized by diffusion of electrons and by radiation, E, is not necessarily zero. For 
this case Kunkel & Gross adopted a modification of the Chapman4ouguet 
hypothesis, familiar in gaseous detonations, and according to which the gas 
leaves the shock moving at  sonic speed c,, i.e. u2 = cSz. However, they did not 
allow for the possibility that the shocks may only partially ionize the gas, and 
confined their attention to the two-dimensional infinite-slab geometry. 

Taussig in his first report makes a careful study of the stability of ionizing 
shocks moving parallel to a magnetic field in slab geometry, but does not use a 
closing relation and is thus forced to consider the whole class of ionizing shocks 
defined by the conservation laws and Maxwell’s relations applied across the dis- 
continuity. While interesting and useful, this study omits the very important 
energy losses due to dissociation and ionization. This is remedied in Taussig’s 
second report, but the calculations are so extensive that he has confined attention 
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to just two values of the upstream electric field, which takes a parametric role in 
the absence of a closing relation, and to hydrogen gas. He allows for the presence 
of four chemical species H,, H, H+ and e- in chemical equilibrium in regions 1 
and 2 (upstream and downstream of the shock) and provides computer solutions 
for the highly non-linear equations that result. However, unless the closing 
relation is determined, either by solving the very difficult problem of the shock 
structure or by accepting the C-J hypothesis, this work on partially ionizing 
shocks, while valuable, cannot be used to predict shock speeds. 

Cold non-conducting, gas - - - - 
Downstream 

Neutral gas 

FIGURE 2. Theoretical model of ahook. 

What renders the shock structure problem so difficultand certainly beyond 
analytical methods-is the fact that in one narrow region the flow goes through 
several distinct regimes of plasma physics, so that the transport coefficients have 
very complicated temperature and magnetic field dependence. Rosciszewski 
(1963) has made an effort to calculate the structure in argon gas, but the com- 
puting work required is not completed, and the model used, in assuming Saha 
equilibrium throughout the shock, is restricted to high-density plasmas. 

Let b denote the ratio of the jump in the transverse magnetic field to the field 
normal to the shock front, then, as Kunkel & Gross (1962) have made clear, the 
GJ hypothesis is physically very reasonable for those shocks having b < 1. 
Clearly, if it is a steady-state solution that we seek, then we can permit neither 
a rarefaction wave to overtake the shock, nor a compressive wave to fall behind. 
The existence or not of a rarefaction wave depends, of course, on the boundary 
conditions at the end of the tube, say z = 0, from which the shock is receding. 
With a closed stationary end at z = 0, a rarefaction wave will pursue the shock, 
which will be time-independent only if u2 = c2, where c2 is the speed of a magneto- 
sonic expansion in the region immediately behind the shock. Such expansions 
propagate at the slower of the two distinct speeds available to magnetosonic 
waves. 

Some doubt was cast on the applicability of the C-J hypothesis when the 
Kunkel-Gross theory failed to give agreement with the Australian experiments 
(Brennan et at. 1963). But it appears that until a large range of solutions are 
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available for the shock structure we must rely on this hypothesis, and, as will be 
shown later in this paper, when the theory is modified to make allowance for 
(i) cylindrical geometry, (ii) dissociation and (iii) partial ionization, there is 
good agreement between theory and experiment. Our treatment avoids the com- 
plexities of Taussig’s theory by the adoption of the Saha equation in region 2. 

2. The mathematical model 
Figure 2 (a) shows the mathematical model of the shock front we shall adopt. 

Region 1 is the upstream, undisturbed flow, which in a frame fixed in the front, 
has a velocity ul& and a magnetic field B,, &, where & is the unit vector parallel 
to the Oz-axis. Region 2 is a region of non-uniform flow immediately behind the 
shock-non-uniform in the sense that the curvature of the shock front induces 
some z-dependence on pressure, density and magnetic-field values. It is followed 
immediately by the expansion wave in region 3. For a reason to be made clear 
shortly, a volume current j,, is assumed to flow from the plasma into the back of 
the shock front over the annulus ri < r < T,,, where ri is the radius at which the 
inner current sheet forms and r,, is the effective outer radius of the plasma. The 
outer radius will be smaller than the tube radius due to the cold, unionized gas 
near the walls. 

Figure 2 (b )  shows a small section of the annulus (T,  T + dr) at which the shock is 
inclined at an angle 

and, if j* is the sheet current in the shock, Maxwell’s equations yield 

where [XI 3 X, -XI. The equations involving B give 

[B,] = -pj$ sin a, 
where 

so that j* = J*(Fcosa-&sina)+j@. 
In these equations J* defines the shock strength and can be assumed known 

(see equation (3)), whereas j B  and a are unknown functions of radius that can be 
found only by solving the flow equations in regions 2 and 3. This is the most 
difficult problem arising from the cylindrical geometry. It can be avoided by 
assuming the front to be orthogonal to the tube axis at all points (a = 0), in 
which case region 2 becomes a vanishingly small disc separating the shock from 
the expansion wave in region 3. Alternately if the region of the shock for which 
a w 0 is fairly close to the wall, then the presence of the wall current sheet makes 
B,, w 0, so that jg w 0. And now by studying the shock relations across this 
normal section of the shock front, we are able to simplify considerably the calcula- 
tions of the front velocity -ul. As we are seeking an equilibrium solution, all 
other points on the front must have the same velocity relative to the upstream 
gas as the normal section. In  the rest of this paper, then, we shall be dealing with 
the jump conditions for the small annular region in which a andj$ are negligibly 
small. 

- a to the tube axis. Unit normal to the shock is 

n = &cosa+Fsina, 

n x [ B ] = p j * ,  nx[E]=O, and n . [ B ] = O ,  

(1) } 
[Be1 = BO, = -@*, 

[B,] = B,, = pj$ cos a, 
J *  = j,* sec a = --jz cosec a, 
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Conservation of charge gives exactly 

i a  a 
r ar a2 
- - (rJ* cos a)  - - (J* sin a) +jz2 cos a = 0 

on allowing for the presence of the feed current j,,. Now it is found that the 
shock speed u1 into the upstream gas depends directly on B,, (see (15) and figure 4) 
and, as this speed is the same for all points on the shock, we conclude from (1) 
that at  least for the region of small a, J* must be constant. Hence by (1) and (2) 

j,, = - J*/r = B,,/pr. 

Without this volume feed current J* would have l /r  dependence, and the shock 
profile would be time dependent. The physical origin of j,, can be argued as 
follows. The electrons in the shock consist not only of those that started at one 
extreme radius, ri or r,, but also of fresh electrons from the newly ionized gas 
arriving from region 1, and these electrons, together with the new ions, will 
contribute to  J* by moving in opposite directions as they pass through the radial 
electric field in the shock front. This tendency to charge separation must be 
off-set by a current flowing into the shock from the plasma from the rear, and 
this is the current j,,. A local drop in the value of J* would reduce Be,, and so 
reduce the shock speed at the same point. Because of the increased transit time 
of the freshly ionized particles, this would tend to produce a greater charge 
separation and thus result in a greater volume current, so restoring the balance. 
There will be an effective outer radius r, at which the volume current is checked 
by the rapidly increasing (with radius) resistivity; thereafter J* will have l / r  
dependence. The total current passing through the shock and back along the 
outer current sheet is I = 2nr, J*,  so 

B82 = IUlWnro). (3) 

If B,, is to be found from current rather than magnetic-field measurements, 
the problem of estimating the effective radius ro arises. In  MHD wave experi- 
ments it has been found that as much as 10% of the tube radius must be con- 
sidered lost to the wall boundary layer. A further point is that the expansion 
wave following the shock will result in a further increase in Be, and will therefore 
carry some current. However this will be negligibly small if the magnetic pres- 
sure greatly exceeds the gas pressure (see Kunkel & Gross 1962, equation (75)). 
Thus 1 in equation (3) is the total current passing through the electrodes only if 
cA 9 cs, where c,, c, are the Alfven and sound speeds defined below in (13). 

It must be admitted that the question of the radial dependence of B,, and 
other variables behind the shock is a difficult one, and such experimental results 
that are available are not conclusive on this point as they apply to the plasma 
some distance behind the front, and therefore in a different flow regime (see 
Sharp & Watson-Munro 1964). However these experiments do show that the 
front velocity is almost constant across the radius. 

Let B, and E, be constants then, from (1)  and 2 x [El = 0, it follows that 

B,, = B,, = B,, E,, = E,., = E,. (4) 

B, is assumed to be given and E, is to be determined by the theory. 



694 L. C .  Woods 

3. The shock-wave equations 
Let p ,  p ,  h and v = (0, w, u) be the density, pressure, enthalpy and velocity 

(in cylindrical co-ordinates) of the whole gas, then the usual gasdynamic con- 
servation laws require the constancy of pu, puv + 2(p + B2/2,u) - s .  BB/p and 
pu(&lvI2+h)+hZ.E x B/p across the shock, which is assumed to be sufficiently 
wide to allow heat flux to be neglected. Now set 

u2 = u1-v2 ( 5 )  

so that v2 represents the inflow velocity of the ionized gas into the moving shock 
front, and use the axial component of the momentum-conservation equation to 
eliminate u1v2 from the conservation-of-energy relation. As w1 and Be1 are both 
zero, the outcome of this calculation is 

~lul (ez -e l+  4 ~ ;  + 3 4 )  - U ~ B & / ~ P  = ~ 2 ~ 2 - - E o B e z / ~ ,  (6) 

(7) 

where el and e2 are the internal energies 

el = pl/(pl(yl  - I)}, e2 = +(I + $1 kT2/mi + ( 1 - $) ed + 9 e o ,  

in which ed, eo are the dissociation and total ionization energies (starting with 
diatomic gas), m, is the ion mass and 9 is the downstream degree of ionization. 
Here we have assumed that downstream of the shock the gas is wholly mon- 
atomic and that all particles are in thermal equilibrium. 

The other conservation laws yield 

and 

where the downstream pressure is related to the temperature by 

~2 = ( 1 + $1 ~2 kT2Imi. (10) 

The radial component of Ohm’s law in region 2, plus the assumption that Be2 
is constant, i.e. jr2 = 0, leads to 

Eo = u1Bs2 - v2 Be2 - ~2 Bo. (11) 

Two difficulties face us in the application of the C-J hypothesis, viz. we need 
expressions for the phase velocities of magnetosonic waves in a rotating plasma 
with a steady-state helical field, and as these waves are dispersive, being subject 
to relaxation phenomena, we must specify their effective frequency, wp say. 
The calculation of the phase velocities is not at  all easy unless attention is con- 
fined to the case of small helical angle, i.e. when 

b < 1, b Be,/Bo. (12) 

(Practically all the experimental results available to the author satisfy this 
condition, with b usually less than 0.05.) If it is further assumed that the 
magnetic and gas-pressure waves following the shock have negligible radial 
dependence, conforming with the assumption already introduced about the 
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shock strength J*, then all radial wave-numbers vanish. In  this case the two 
waves reduce to the purely torsional Alfvhn wave, and the purely longitudinal 
sound wave having velocities c,, c, given by 

= BilPP2, 4 = Y2P21P2, (13) 

where in general y2 depends on up, T2 and Y, and lies between 1 and Q (e.g 
see Goldsworthy 1961). A Fourier analysis of the solitary wave spanning the 
rear end of the shock to the beginning of the expansion wave would entail .some 
high frequency components at least, suggesting that the frozen-in value y2 = # 
is the correct one to choose for equilibrium. However, as our final results are not 
very sensitive to the value selected for y2, we shall leave this point open. In  the 
experiments the axial-field strengths are usually large enough to make cA cs, 
and so confining attention to this case-which permits us to use equation (3) 
t o  determine Bo2-we now have from the C J  hypothesis 

a2 = u1- u2 = (Y2P21PAt ( 1  < Y2 G 9,. (14) 

Finally on assuming thermal equilibrium behind the shock, we can complete 
,our set of equations by using the Saha equation in region 2 to relate 9 , T z  and p2.  

4. Non-dimensional form of the theory 
The large value of the ionization energy e, makes it natural to use the velocity 

u, = (2e0)4 
defined by 

.as the reference velocity. We shall adopt the notation 

x = UJU,, 

r = kT/(rniu,2), 7r E p/(&plu:), 8 = ed/eO, 
(15) I x = x2, Y E u~v~ /u : ,  59 cb, c = +(q - n1), 

.and 2 = Y+(1-9)€-7r1/(y,-l)+T/% 

Then ( 8 ) ,  (9) and (10) take the form 

.and 

w 2  - - 5 n 2 =  2 ( Y - c ) ,  - - 
p1 x-Y’ u, 2’ 

Pz,- X 

‘on eliminating 7r2 from the last equation. Similarly, when E,, 7r2, w2 and e2 are 
eliminated from (6), it can be written in the form 

5 2 +  4Y2- 5 Y c  + 259 Y 
z + 3( Y - c )  

X =  

Equations (14) and (17) give 
x = (1 + y2) Y - y2c. 

An iterative method of solving (16) to (19) plus the Saha equation is easily 
devised-the approximate theory now following provides a pattern that could 
be adopted. 
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Taking advantage of (12) and the fact that as the neutral gas is usually a t  
room temperature, nl 4 1, we can neglect q and c, and then find that 

x2 = (1+Y2) y = ((1+Y2)2/Y2H1+9)72, 

P2IP1 = (1 + Y2)/Y2* 

(20) 

(21) 

(22) 

E2 = X2{$ + (1 - 9) E + (hX)2), h2 (37'2 - I)/( 1 + Y2),, 

0 0 1  0.2 0.3 0 4  0 5  0 6  0.7 0.8 

5 
FIUURE 3. Cornpaxieon of experiment and theory for hydrogen and deuterium at 
p1 = 160pHg (curves for yz = 1 and y, = 8 indistinguishable). Experimental points 
taken from Brennan et al.: A, H,, 150pHg, 15kA; X ,  D,, 17OpHg, 15 kA; 0 ,  D,, 
170pHg, 7.7 kG; 0, D,, 7.7 kG, 15 kA. 

For hydrogen or deuterium gas we can take the Saha equation in the approxi- 
mate form 

with r2 = 2.75 x 10-6T2, 8 = 0.117. 

In  (23) Y1 is the pressure expressed in ,uHg at  20 "C, and we have used (22) to 
eliminatep,. 

For the range 0.01 -= 3 < 0.99 these equations are most easily solved as 
follows. Choose an upstream 8, and keep this fixed throughout the calculation. 
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Then choose T, and determine 9 from (23); then (20) and (21) yield the (~~5)- 
relationship. A succession of such calculations enables us to cover the 9 range 
quite quickly. Changes in 9,, which usually lies in the range 20-1000pHgY 
have very little effect on the shape of the ~ ( 6 )  curve thus obtained. 

For 9 > 0.99 we can neglect (23) and find 

1 
2h2 2{( 1 + ~ 2 ) ~ / 7 2 }  7 2  = x2 = - {( 1 + (2h6)2)* - 1}, 

x c/h for [ B  1, (24) 

I I I I I I I I I 

0 

0 0.5 1 *o 20  2.5 3.0 3.5 

f 
FIGURE 4. The fully ionized region. *, some unpublished low-pressure results. 

while for 9 < 0.01, 

(25) 
1 

{ ( + 72)2/rz} 7 2  = x2 = 5p, ( (6 ,  + (2hc)2)* - €}Y 

E C2/e near 6 = 0. 

Figures 3 and 4 show on different scales the x(C)-relation for hydrogen and deuter- 
ium at B, = 16OpHg. The eleven points shown in figure 3 on the y2 = Q curve 
for the indicated degrees of ionization start a t  T, = 0.8 x lo4 "C (at 9 = yo) 
and increase by 103°C up to T, = 1.8 x lO4OC (at 9 = 98 %). With y, = 1 the 
x(5)  curve is hardly distinguishable from that shown in figure 3 for y2 = t. 
The relation between temperature and speed squares of the shock appears in 
figure 5. 
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5. Comparison of theory and experiment 
The above theory is compared in figure 3 with the experimental results for 

shock speed given by Brennan et al. (1963). Other, as yet uiipublished work by 
the Sydney University Department of Plasma Physics shows that, at  the higher 
pressures a t  least, the shock speed is remarkably constant along the tube, 
strongly suggesting that a steady-state shock has been achieved. However, 
it  should be noted that the experiments show that the radial discharge in the 
front occurs, not in a sheet as assumed in the theory, but in one, two or three 
spokes that wind up the tube in a helical path. It is difficult to estimate the 
effect this will have in producing some disagreement between theory and experi- 
ment. 

2.5 

2.0 

e 

2 1.5 
X 

fi- 

1 *o 

0-5 

0 
0 0.1 0.2 0.3 0 4  0.5 0.6 0.7 

Xa 

FIGURE 5 .  Temperatures in ionizing shocks. 

As values of I rather than Be, were given for the experiments, some estimate of 
the effective radius ro (see (15)) is required in order to determine E. Brennan 
et al. do give one measured value of Be2, namely 350 2 50 G at I = 15 kA, from 
which we find that r,, = 8.6 cm in a tube of radius 10.25 em. The points plotted in 
figure 3 are all based on this value of ro, but even with a value of 10-25 cm there 
is substantial agreement between theory and experiment. Each experimental 
point carries quite an appreciable error bar, so that the scatter shown in the 
figure is to be expected. The importance of allowing for both dissociation and 
ionization is made clear by the figure. 
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In  figure 4, most of which (5 > 0.6) is the regime that Kunkel & Gross 
considered, four additional experimental points are shown. These come from an 
unpublished report of the Sydney group, giving results for pressures down to 
I p H g .  They find that the velocity of the shock tends to constant values, in- 
dependent of p1  below PI = 20pHg. This deviation from the predictions of the 
theory could be explained, at least qualitatively, in several ways-e.g. (i) energy 
loss to walls, (ii) current shedding from the shock front so that B,, is no longer 
related to I by (3), (iii) thermal and/or dynamic equilibrium not achieved 
because of the short tube lengths involved, and (iv) viscous effects. Of these 
(ii) seems rather probable; again measurements of BBz might resolve the problem. 

It is a pleasure to acknowledge the help given me by Dr W. B. Kunkel of the 
University of California Radiation Laboratory, Berkeley in several discussions, 
and also the value of a meeting with Prof. C. N. Watson-Munro and his group at 
Sydney University. The work reported in this paper was performed while the 
author was on leave in the Aeronautical Sciences Division, University of Cali- 
fornia at Berkeley. 
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